October 28, 2003

OLED Displays

Presented by Sönke Dohrn

Overview

- Technology wazzup!
- The Edge Ahead Application Areas
- Timeline "Event Horizon"
- Proprietary[©] Technology[™]
- Hot Stuff Eye Candies
- Questions?!

October 28, 2003

Technology

- Organic Light Emitting Diodes
- Light emittation based on fluorescence
- Carbon-based designer molecules
 - Polythiophene
 - Polyfluorene
 - Polyphenylenevinylene

Getting them to glow...

- Polymer layer sandwitched between two electrodes
 - Thinner than 500 nm
- Electrons in benzene rings are excited by an external voltage of 3 to 5 V.
- Upon returning to ground state, they radiate a soft bright light
- Leave no trace of afterglow
- Illuminating power is comparable to a conventional 100 W light bulb.

Matrix

- Passive
 - Individual pixels get activated passively
 - Illumination to row and column line
 - Brightness determined by amount of current flowing
 - Technically difficult to activate more than one million pixels (size of 8 inch display)
- Active
 - Every light spot gets its own thin film transistor (TFT)
 - Additional layer of polycrystalline silicon
 - Improving life spot's life span

Manufacturing Process

- Cheap and simple
 - Production process similar to an Ink Jet printer
 - **BUT:** Production rooms need to be air-tight
 - Latest: Organic Vapor Phase Deposition (OVPD) by UDC
- Displays require hermetic sealing
- In use was thin class
- Now: flexible plastics
 - Whole new application possibilities

October 28, 2003

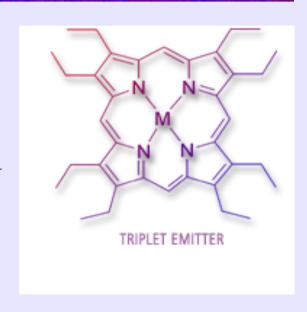
The Edge Ahead

- OLED's have a simpler structure
- Polymers form solid cover
- No more complex reorientation of light
- Much brighter
- Nearly 180° viewing angle with 90% surface covered
- Refresh rate (great for video)
- Not adversely affecting energy balance

October 28, 2003

Application

- Flexible plastics enable rollable displays
- Woven into clothing
- Walls and ceilings painted with OLED's
- No other technology can produce such thin and versatile light sources.


Timeline

- 1985: First discovery by Ching Tang
- 2005: Glass flat-panels will land
- 2005 2008: Transition to plastic displays
- 2009: Volume shipments of notebook displays
- 2012: Market expected to reach \$3 billion.

October 28, 2003

High Efficiency Materials

- Electrophosphorescence by United Display Corporation
- Use of both singlet and triplet excited state
- Potential of 100% efficiency

October 28, 2003

Proprietary UDC Technology

- TOLED's [@ www.universaldisplay.com/toled.php]
 - Emitting
 - Top-only
 - Bottom-only emitting
 - Both (transparent)
 - Improves daylight readibility

October 28, 2003

Proprietary UDC Technology

- SOLED's [@ www.universaldisplay.com/soled.php]
 - Stacking of red, green and blue subpixels
 - Improving display resolution
 - Enhances full-colour quality
 - Only a third of space required
 - Useful for wireless web-applications

October 28, 2003

Major Players

- Kodak just branded its OLEDs NuVue Display Technology
- DuPont recently launched Olight brand
- Siemens expert on surface efficiency
- All other major players are licensees of Kodak or Cambridge Display Technology

Hot Stuff

 Sony 10-inch notebook diplay

Hot Stuff

- Electronic Newspaper by IBM
- Kodak EasyShare
- Other:
 - Mobile phones
 - Digital cameras

OLED's

Thank you.

Your questions, please.