JavaVideo and Audio in Consumer
Devices:

JMF and MM API
By

SHAHZAD NASEEM



|ntroduction

Overview

Personal Computer

Digital Television Recelver
Mobile Phone

Conclusions

References

R NN OO NN BAPEFEEDN



Audio and Video in Consumer Devices, two aternatives:

e Video objectsin e Stand alone video
programming tools: player:

— Synchronized Markup — Proprietary players:
Integration Language Real One, Windows
(SMIL) Media Player...

— Fash presentations — Open Source players:

— JavaMedia winamp, MPlayer...
Framework (JMF)




o Specifically Java, why?
— Consumer devices includes Java

e Digital TV = Multimedia Home Platform (MHP)
and JDK

e PCs=Java2 Standard Edition

 Mobile phones = Connected Limited Device
Configuration (CLDC) + Information Device
Profile (MIDP)




Personal
Computer

Digital Television
Receiver

Communicator

Mobile
Phones

Java Media
Framework

Optional
Packages

Mobile Media
API

Java 2
Platform
Standard

Edition

(J2SE)

Multimedia
Home
Platform

(MHP)
JMF 1.0 API

DWB API

Personal Profile

Personal
Basis
Profile

Foundation
Profile

Mobile
Information
Device
Profile
(MIDP)

JDK 1.1.8

CDC I

JVM I

e
JVM I

CVM I

KVM I
Operating System I




e Physical Characteristics:

— Pointer device (e.g., mouse) and keyboard as maor
Input mechanisms

— Screen resolution: 640x480 to 1600x1200 pixels
— Runtime memory: around 128 to 256 MB




 JMF asan optional package either version 1.0 or 2.0

 JMF relies on the mentioned classes. Manager, Player,
Data Source, and Controller.

* Player behaviour:
— Unrealised
— Readlised
— Prefetched
— Started




deallocate() realize()

B

RCE

——»{ Realized

prefetch()

Prefetching

FFCE

s

deallocate()

RCE: RealizeCompleteEvent
PCE: PrefetchCompleteEvent
SE: StopEvent

deallocate()

stop()




e Time modd

« Datamodel: DataSource encapsul ates both the location and
protocol of media

e JMF 2.0includes aswell alow level API

— A Processor performs user-defined processing on the
media data using IMF plug-ins (e.g. Codec,
Demultiplexer, Effects, Multiplexer, Renderer)

* Render isdonein an AWT Component




o Multimedia platform in the living room
e Services:
— Audio visua stream (normal passive watching)
— Interactive services (active behaviour)
o Physical Characteristics
— Remote control as major input mechanism
— Screen resolution: 720x576 pixels (minimal)
— Runtime memory: at least 16 MB




 Includes anumber of specific digital TV controls:

— Media Select: changes the actual stream
presented (e.g., change the angle of a camera)

— Language: intended to control the audio and
subtitles (if present) language



e Provide a number of services:
— Internet (e.g., Nokia + Opera), MMS, Video Player
— Office capabilities
* Physical characteristics
— Key Pad as major input mechanism
— Screen resolution: 84x48 to 120x130 pixels
— Runtime memory: 160 to 512 KB
e JavaEnvironment

— Mobile Information Device Profile (MIDP) version 1.0
or 2.0




« MMARPI Description:

— It extends MIDP functionality by
providing audio, video and other time-
based multimedia support

—Itisathin Javalayer completely platform
dependent

 MIDP 2.0 includes the audio-only subset
from MMAPI (i.e. Audio Building Block)



« Same concepts as IMF: Player, Controller,
Manager and DataSource.

* Player behaviour same (Unrealised,
Realised, Prefetched, Started) as JIMF but
one more state:

— Closed: the player cannot be used again, it has
released most of the resources



close()

1 relize()

deallocate() X

deallocate()



* The types of media supported depends on the
controls associated to the Player

— Player.getControls() returns the supported
controls

A Player renders media data in a component dependent on
the device configuration, two options:

— AWT Component
— MIDP Canvas or ltems

 VideoControl manages the location and the size of
the video




e The actual capabilities of the targeted device is the cause of
the differences between standards

e Low level versus high level control of the media:

— In MM API and IMF (MHP) the actual control of the
mediais done at the native level since they are
resource-constrained devices (e.g. decoding)

— JMF uses two profiles, IMF plug-ins enables
developers to process the data (e.g. multiplexing)

e Behaviour of the player

— All the standards have the same player behaviour. But
MM API defines a Closed state to make explicit that all
the resources are freed




« MM API isinfluenced by the design of JMF, and have
number of ssimilarities. Manager, Player, Data Source, and
Controller concepts.

— MM API hides Controller within Player
e Video render
— JMF = AWT Component (complete integration)
— MHP = A layer (transparency can be applied)
— MM API = MIDP canvas (minimal integration)

o Controls are different depending on the targeted device
(e.q., subtitles language in television)

 MHP includes specific television requirements (e.g., Clock
not needed in broadcast, L ocators)




e Multimedia
e Digital Television
e PC

 Mobile Phones



