
By

SHAHZAD NASEEM

Java Video and Audio in Consumer
Devices:

JMF and MM API

Outline

• Introduction 2
• Overview 1
• Personal Computer 4
• Digital Television Receiver 2
• Mobile Phone 5
• Conclusions 2
• References 1

Introduction (1/2)
Audio and Video in Consumer Devices, two alternatives:

• Video objects in
programming tools:
– Synchronized Markup

Integration Language
(SMIL)

– Flash presentations
– Java Media

Framework (JMF)

• Stand alone video
player:
– Proprietary players:

Real One, Windows
Media Player...

– Open Source players:
winamp, MPlayer...

Introduction (2/2)

• Specifically Java, why?
– Consumer devices includes Java

• Digital TV = Multimedia Home Platform (MHP)
and JDK

• PCs = Java 2 Standard Edition
• Mobile phones = Connected Limited Device

Configuration (CLDC) + Information Device
Profile (MIDP)

Overview

Personal Computer (1/4)

• Physical Characteristics:

– Pointer device (e.g., mouse) and keyboard as major
input mechanisms

– Screen resolution: 640x480 to 1600x1200 pixels
– Runtime memory: around 128 to 256 MB

Personal Computer (2/4)

• JMF as an optional package either version 1.0 or 2.0
• JMF relies on the mentioned classes: Manager, Player,

Data Source, and Controller.
• Player behaviour:

– Unrealised
– Realised
– Prefetched
– Started

Personal Computer (3/4)

Personal Computer (4/4)

• Time model
• Data model: DataSource encapsulates both the location and

protocol of media
• JMF 2.0 includes as well a low level API

– A Processor performs user-defined processing on the
media data using JMF plug-ins (e.g. Codec,
Demultiplexer, Effects, Multiplexer, Renderer)

• Render is done in an AWT Component

Digital Television Receiver (1/2)

• Multimedia platform in the living room
• Services:

– Audio visual stream (normal passive watching)
– Interactive services (active behaviour)

• Physical Characteristics
– Remote control as major input mechanism
– Screen resolution: 720x576 pixels (minimal)
– Runtime memory: at least 16 MB

Digital Television Receiver (2/2)

• Includes a number of specific digital TV controls:

– Media Select: changes the actual stream
presented (e.g., change the angle of a camera)

– Language: intended to control the audio and
subtitles (if present) language

Mobile Phone (1/5)
• Provide a number of services:

– Internet (e.g., Nokia + Opera), MMS, Video Player
– Office capabilities

• Physical characteristics
– Key Pad as major input mechanism
– Screen resolution: 84x48 to 120x130 pixels
– Runtime memory: 160 to 512 KB

• Java Environment
– Mobile Information Device Profile (MIDP) version 1.0

or 2.0

Mobile Phone (2/5)
• MMAPI Description:

– It extends MIDP functionality by
providing audio, video and other time-
based multimedia support

– It is a thin Java layer completely platform
dependent

• MIDP 2.0 includes the audio-only subset
from MMAPI (i.e. Audio Building Block)

Mobile Phone (3/5)

• Same concepts as JMF: Player, Controller,
Manager and DataSource.

• Player behaviour same (Unrealised,
Realised, Prefetched, Started) as JMF but
one more state:
– Closed: the player cannot be used again, it has

released most of the resources

Mobile Phone (4/5)

Mobile Phone (5/5)

• The types of media supported depends on the
controls associated to the Player
– Player.getControls() returns the supported

controls
A Player renders media data in a component dependent on

the device configuration, two options:
– AWT Component
– MIDP Canvas or Items

• VideoControl manages the location and the size of
the video

Conclusions (1/2)
• The actual capabilities of the targeted device is the cause of

the differences between standards
• Low level versus high level control of the media:

– In MM API and JMF (MHP) the actual control of the
media is done at the native level since they are
resource-constrained devices (e.g. decoding)

– JMF uses two profiles, JMF plug-ins enables
developers to process the data (e.g. multiplexing)

• Behaviour of the player
– All the standards have the same player behaviour. But

MM API defines a Closed state to make explicit that all
the resources are freed

Conclusions (2/2)
• MM API is influenced by the design of JMF, and have

number of similarities: Manager, Player, Data Source, and
Controller concepts.
– MM API hides Controller within Player

• Video render
– JMF = AWT Component (complete integration)
– MHP = A layer (transparency can be applied)
– MM API = MIDP canvas (minimal integration)

• Controls are different depending on the targeted device
(e.g., subtitles language in television)

• MHP includes specific television requirements (e.g., Clock
not needed in broadcast, Locators)

References
• Multimedia

http://www.tml.hut.fi/Opinnot/T-111.350/index_uk.html
• Digital Television

http://www.mhp-interactive.org
• PC

http://java.sun.com/products/java-media/jmf/index.html
• Mobile Phones

http://java.sun.com/products/j2me/
http://java.sun.com/products/cldc/
http://wireless.java.sun.com/midp/
http://java.sun.com/products/mmapi/

