
Media Technology
Prof. Dr.-Ing. Andreas Schrader

Solution of Assignment 2

Solution 2.1

Entropy of a system in general defines the amount of order contained. For random
sources it is a means for the uncertainty of the events generated as symbols of a certain
probability. The higher the order (structured system), the lower is the entropy. In general
systems (like the universe), the entropy is constantly growing towards total chaos
(infinite entropy). In digital random sources, the entropy is limited and can be computed
by the set of symbol probabilities as defined by Shannon.

Redundancy describes the distance of a system from its perfect state (total chaos). It
describes the remaining structures. For a random source, the redundant part is the amount
of data unnecessary to describe the information content. Entropy encoding or source
encoding eliminates the redundant parts of the message (due to regular patterns or self-
similarities) to increase the compression ratio.

Irrelevancy is a subjective measure of unnecessary information from the perspective of
the receiver. For multimedia compression, irrelevancy is defined as the part of the data
that can not be perceived by the human aural and visual perception system. In lossy
compression schemes, this is used to increase the compression ratios by not storing or
transmitting the irrelevant parts. Even higher compression ratios can be achieved by
reducing also some of the relevant parts of the data and tolerating some distortion.

Solution 2.2

Let’s assume a Markoff process of zero order with the alphabet A = {a, b, c, d, r} is the
source of the following message: ‘abracadabra’. The probability set of the source is not
known and has to be estimated from the message itself.

(a) Estimate the probability of the alphabet symbols from the message.
Since we don’t know the probabilities, we can only assume, that the number of
occurrence h(ai) of each letter ai in the only message we know matches the
probabilities p(ai) of the source. These occurrences are
p(a1=’a’) = h(‘a’) = 5/11, p(a2=’b’) = h(‘b’) = 2/11, p(a3=’c’) = h(‘c’) = 1/11,
p(a4=’d’) = h(‘d’) = 1/11, p(a5=’r’) = h(‘r’) = 2/11.

(b) Calculate the entropy of the source from this estimation.
The entropy of the source can be determined by the following formula (see slide
274):

() ∑
=

⋅−=
5

1
))(()(

i
ii bitapldapH ω

 Therefore

bit2.0390.3142 0.447 *2 0.517

)
11
1(

11
12)

11
2(

11
22)

11
5(

11
5)(

≈⋅++≈

⋅⋅−⋅⋅−⋅−= ldldldH ω

This means, we can’t construct a code with an average code length less than 2.039
bit, if we assign a dedicated code for each symbol. In other words, whatever code
we construct, we will need at least 11*2.039 = 22.429 bit to code the given
message.

(c) Construct a Huffman code for the source. Is there just one code mapping table
possible?

1. The set of source symbols are sorted in order of non-
increasing probabilities

Here are different ways of course, since there are some symbols with the
same probability. The following sorted lists can be used:
a, b, r, c, d – a, b, r, d, c – a, r, b, c, d – a, r, b, d, c
They are leading to different Huffman codes, but the result will have the
same average code length in each cases. Let’s just use the first list in the
following steps.

2. Each symbol is interpreted as the root of a tree

3. Two subtrees with the smallest probabilities are merged
into a new subtree, which root element is assigned the
probability sum. The left subtree is marked with 1, the
right subtree is marked with 0

4. Step (3) is repeated until a single tree remains,
containing all symbols and having a probability sum of 1

Again, here we have several possibilities. We decide for merging c and d
first, resulting in a subtree with a sum probability of 2/11. Afterwards we
merge b and r giving another subtree with a sum probability of 4/11. Then
we merge the two new subtrees and achieve another subtree with

probability 6/11. Finally we merge ‘a’ with that last subtree and finish the
process.

5. The code of the leaves is given by the sequence of marks on
the path from the root to the leaf

We receive the following code:
c(‘a’) = ‘1’, c(‘b’) = ‘011’, c(‘c’) = ‘001’, c(‘d’) = ‘000’, c(‘r’) = ‘010’

Of course, also other mapping tables would be possible. One simple
alternative would be to invert ‘0’s and ‘1’s in the code above, resulting in
c(‘a’) = ‘0’, c(‘b’) = ‘100’, c(‘c’) = ‘110’, c(‘d’) = ‘111’, c(‘r’) = ‘101’

Other codes could be constructed using another order in the combination
of subtrees. For example, instead of merging ‘b’ and ‘r’ in the second step
above, we could have merged ‘r’ with the subtree of (‘c/d’). This would
result in the following code tree:

and the following code:
c(‘a’) = ‘1’, c(‘b’) = ‘01’, c(‘c’) = ‘0001’, c(‘d’) = ‘0000’, c(‘r’) = ‘001’

(d) What is the average code length of your code?
The average code word length can be determined using the formula below (see
slide 261):

() ∑
=

⋅−=
5

1
)()(

i
ii bitalapCL

Since we have l(a1=’a’) = 1 bit , l(a2=’b) = 3 bit, l(a3=’c’) = 3 bit, l(a4=’d’) = 3 bit
and l(a5=’r’) = 3 bit, we can compute

bit 2.0913
11
123

11
221

11
5)(≈⋅⋅+⋅⋅+⋅= bitCL

Regarding the entropy calculated above, we have a redundancy of

bit 0.052 2.039 - 2.091)()()(==−= ωHCLCR

(e) Code the message using your code table. How long is the resulting bit sequence?

 When we use the code word table from (c), the message will be coded as

 C(‘abracadabra’) = ‘1 011 010 1 001 1 000 1 011 010 1’

The resulting bit sequence is therefore 23 bits long, which matches our
expectation of having 11 symbols using 2.091 bit on average.

If we would use a normal ASCII coding table (8 bit per symbol), we would have
used 88 bits. Therefore, our code has a compression ratio of about 1: 3.826. In
other words, the message could be stored or transmitted using only about 26% of
the original space. But we must transmit the Huffman table in addition, which
lowers this effect, especially on very small messages like the one above.

