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Solution of Assignment 2 
 
 
Solution 2.1 
 
Entropy of a system in general defines the amount of order contained. For random 
sources it is a means for the uncertainty of the events generated as symbols of a certain 
probability. The higher the order (structured system), the lower is the entropy. In general 
systems (like the universe), the entropy is constantly growing towards total chaos 
(infinite entropy). In digital random sources, the entropy is limited and can be computed 
by the set of symbol probabilities as defined by Shannon. 
 
Redundancy describes the distance of a system from its perfect state (total chaos). It 
describes the remaining structures. For a random source, the redundant part is the amount 
of data unnecessary to describe the information content. Entropy encoding or source 
encoding eliminates the redundant parts of the message (due to regular patterns or self-
similarities) to increase the compression ratio. 
 
Irrelevancy is a subjective measure of unnecessary information from the perspective of 
the receiver. For multimedia compression, irrelevancy is defined as the part of the data 
that can not be perceived by the human aural and visual perception system. In lossy 
compression schemes, this is used to increase the compression ratios by not storing or 
transmitting the irrelevant parts. Even higher compression ratios can be achieved by 
reducing also some of the relevant parts of the data and tolerating some distortion.  
 
 
Solution 2.2 
 
Let’s assume a Markoff process of zero order with the alphabet A = {a, b, c, d, r} is the 
source of the following message: ‘abracadabra’. The probability set of the source is not 
known and has to be estimated from the message itself. 
 

(a) Estimate the probability of the alphabet symbols from the message. 
Since we don’t know the probabilities, we can only assume, that the number of 
occurrence h(ai) of each letter ai in the only message we know matches the 
probabilities p(ai) of the source. These occurrences are 
p(a1=’a’) = h(‘a’) = 5/11, p(a2=’b’) = h(‘b’) = 2/11, p(a3=’c’) = h(‘c’) = 1/11, 
p(a4=’d’) = h(‘d’) = 1/11, p(a5=’r’) = h(‘r’) = 2/11.  
 



(b) Calculate the entropy of the source from this estimation. 
The entropy of the source can be determined by the following formula (see slide 
274): 
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This means, we can’t construct a code with an average code length less than 2.039 
bit, if we assign a dedicated code for each symbol. In other words, whatever code 
we construct, we will need at least 11*2.039 = 22.429 bit to code the given 
message. 
 

(c) Construct a Huffman code for the source. Is there just one code mapping table  
possible? 
 

1. The set of source symbols are sorted in order of non-
increasing probabilities 

 
Here are different ways of course, since there are some symbols with the 
same probability. The following sorted lists can be used: 
a, b, r, c, d – a, b, r, d, c – a, r, b, c, d – a, r, b, d, c 
They are leading to different Huffman codes, but the result will have the 
same average code length in each cases. Let’s just use the first list in the 
following steps. 
 

2. Each symbol is interpreted as the root of a tree 
 

 
 

3. Two subtrees with the smallest probabilities are merged 
into a new subtree, which root element is assigned the 
probability sum. The left subtree is marked with 1, the 
right subtree is marked with 0 

4. Step (3) is repeated until a single tree remains, 
containing all symbols and having a probability sum of 1 
 
Again, here we have several possibilities. We decide for merging c and d 
first, resulting in a subtree with a sum probability of 2/11. Afterwards we 
merge b and r giving another subtree with a sum probability of 4/11. Then 
we merge the two new subtrees and achieve another subtree with 



probability 6/11. Finally we merge ‘a’ with that last subtree and finish the 
process. 

 
 

5. The code of the leaves is given by the sequence of marks on 
the path from the root to the leaf 

 
We receive the following code: 
c(‘a’) = ‘1’, c(‘b’) = ‘011’, c(‘c’) = ‘001’, c(‘d’) = ‘000’, c(‘r’) = ‘010’ 

 
Of course, also other mapping tables would be possible. One simple 
alternative would be to invert ‘0’s and ‘1’s in the code above, resulting in 
c(‘a’) = ‘0’, c(‘b’) = ‘100’, c(‘c’) = ‘110’, c(‘d’) = ‘111’, c(‘r’) = ‘101’ 

  
Other codes could be constructed using another order in the combination 
of subtrees. For example, instead of merging ‘b’ and ‘r’ in the second step 
above, we could have merged ‘r’ with the subtree of (‘c/d’). This would 
result in the following code tree:  

 



and the following code: 
c(‘a’) = ‘1’, c(‘b’) = ‘01’, c(‘c’) = ‘0001’, c(‘d’) = ‘0000’, c(‘r’) = ‘001’ 
 

(d) What is the average code length of your code? 
The average code word length can be determined using the formula below (see 
slide 261): 
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Since we have l(a1=’a’) = 1 bit , l(a2=’b) = 3 bit, l(a3=’c’) = 3 bit, l(a4=’d’) = 3 bit 
and l(a5=’r’) = 3 bit, we can compute 
 

bit  2.0913
11
123

11
221

11
5)( ≈⋅⋅+⋅⋅+⋅= bitCL  

 
Regarding the entropy calculated above, we have a redundancy of  
 

bit 0.052 2.039 - 2.091)()()( ==−= ωHCLCR  
 

(e) Code the message using your code table. How long is the resulting bit sequence? 
 
 When we use the code word table from (c), the message will be coded as  
 
 C(‘abracadabra’) = ‘1 011 010 1 001 1 000 1 011 010 1’ 
 

The resulting bit sequence is therefore 23 bits long, which matches our 
expectation of having 11 symbols using 2.091 bit on average. 
 
If we would use a normal ASCII coding table (8 bit per symbol), we would have 
used 88 bits. Therefore, our code has a compression ratio of about 1: 3.826. In 
other words, the message could be stored or transmitted using only about 26% of 
the original space. But we must transmit the Huffman table in addition, which 
lowers this effect, especially on very small messages like the one above. 

 
 
 
 


