Media Technology Group Work 2

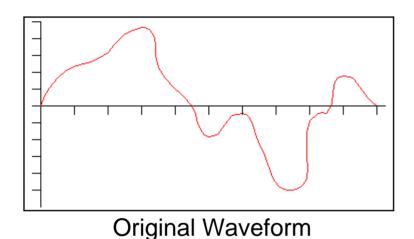
Digital Audio Introduction

(Frequency, sampling-rate, bit-depth, channels, sound quality)

Digital Audio Introduction

Why are frequencies, sampling-rate, bit-depth and channels important?

- Perceived audio quality depends heavily on a large combination of factors.
- Audio editing, video editing and interactive applications depend on digital audio techniques.
- Delivering digital audio via DVD, CD or Internet requires a thorough understanding of digital audio.
- The Media Technology course topics on audio compression are impacted by these factors.

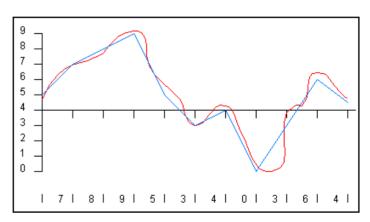

Objectives

- Short review of Sampling Rate and Bit-Depth.
- Introduction to CoolEdit Pro, an industry standard audio editor (now Adobe Encore).
- Frequency analysis the frequencies that make up a digital audio file.
- Adjust the sampling rate for both sample audio files hear and analyze the result.
- Adjust the audio resolution (bit-depth) for both sample audio files hear and analyze the result.

Group Work Report

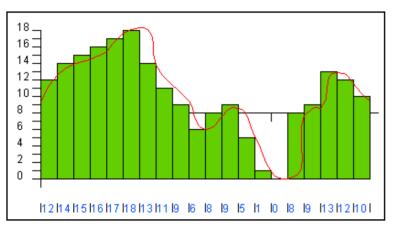
- Please prepare a 1 to 2 page report of your findings from this group work. Outline the important points from each exercise and your results. (Use the section questions as a guide)
- Everyone should hand in their own report (no group reports please).
- The report is due, in printed form, by the beginning of the next Media Technology lecture.

Review: Sampling Rate & Bit-Depth (1)



9 8 7 6 5 4 4 3 2 2 1 0 1 3 1 6 1 4 1 0 1 3 1 6 1 4 1

Sampling & Quantizing


Key Terms

- **Sampling Rate:** How many samples are taken per second.
- Sampling Precision (bit-depth): The accuracy of each sample (quantizing levels).

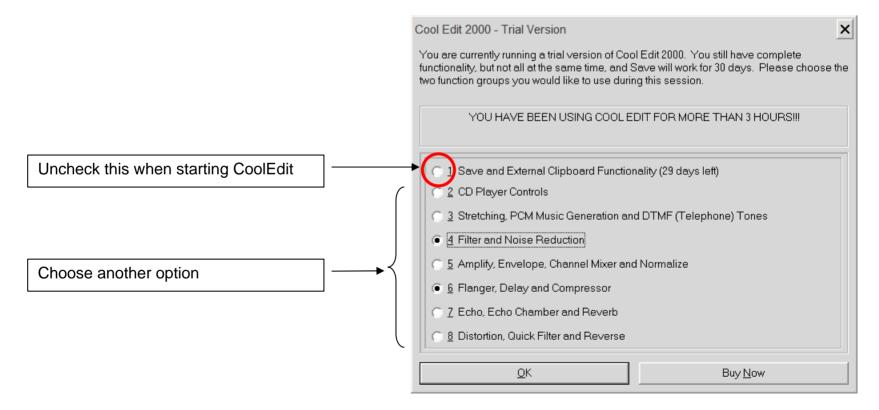


The difference between waveforms is error!

Review: Sampling Rate & Bit-Depth (2)

2X Sampling Rate & Bit-Depth

4X Sampling Rate & Bit-Depth

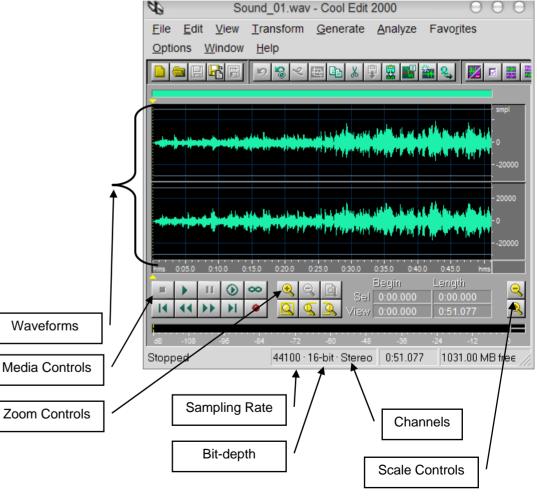

Key Points

- Increasing the sampling rate increases the range of frequencies that can be reproduced.
- Increasing the sampling rate increases the data-rate of the file proportionally.
- According to Nyquist, to regain 'perfect' sound, one must sample at twice the highest frequency of the original sound.
- Increasing the sampling precision increases how accurately each sample is represented

Disable Saving for CoolEdit Pro

When starting CoolEdit Pro, please **de-select** option 1 – "Save and External Clipboard..."

- Do this by selecting a different option from the list.
- This prevents you from accidentally saving over the original file.
- The work today does not require saving.


Introduction to CoolEdit Pro

Procedure

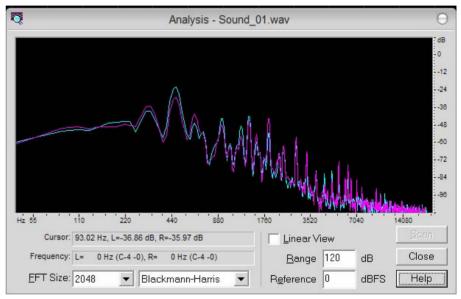
- Start CoolEdit Pro
- Locate the 2 sample audio files:
 - Sound_01.wav
 - Sound 02.wav
- Open a file in CoolEdit Pro
- Experiment with the media controller (play, stop, scrub)
- Locate file information:
 - Using the CoolEdit Pro interface (see right)
- Zoom in and look closely at the waveform
 - The scale tools can help you too see better

Questions

- What are the sampling rate, bit depth, number of channels and duration?
- When "zoomed in" close to the waveform, what are the 'dots' you see?

Frequency Analysis

Procedure (for each sample file)


- Open the file in CoolEdit Pro
- Make sure the frequency analysis is open
 - Select all Menu: Analyze > Frequency Analysis
 - Uncheck "Linear View" (if checked)
- Play the file and watch the frequency analysis graph

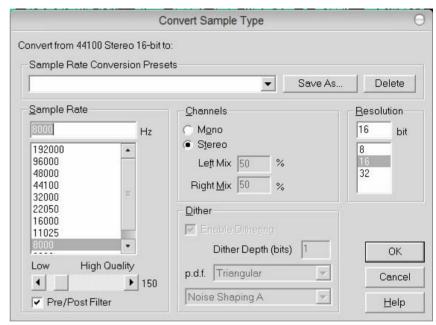
Questions (for each sample file)

- What are the range of frequencies present?
- What frequencies seem to be most prominent? The least?
- Are the graphs from the two sample files different?
 Why or why not?

Extra Info (only if you are interested!)

 Decibels are commonly used when dealing with sound because the ear perceives loudness in a logarithmic scale.

The CoolEdit Frequency Analysis Graph


Sampling Rate Adjustments

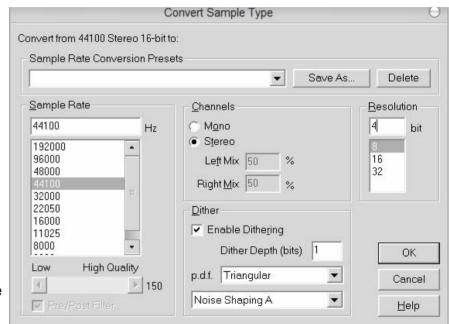
Procedure (for each file)

- Open a file in CoolEdit Pro.
- Adjust the Sampling Rate:
 - Menu: Edit > Convert Sample Type
 - First choose a new sample rate of 8000Hz
 - Click OK the file is resampled.
- Listen to the resampled file play different sections
- Look at the Frequency Analysis graph and check the frequencies in the resampled file.
- Repeat the procedure using a new sample rate of 1000Hz. (Make sure to start with the original file!)

Questions (for each file)

- Can you hear a difference between the original and the resampled files? What is the difference?
- What was the effect of resampling on the frequencies present in the spectrum analysis?
- Was there an audible difference between the resampled file of 1000Hz compared to 8000Hz?
- Can you estimate the effect of adjusting the Sample-Rate on the data-rate of the file?
 - Data rate = (sampling-rate) * (bit-depth) * (number channels)

The CoolEdit Convert Sampling Rate Dialog Sample Rate Conversion


Bit-Depth Adjustments

Procedure (for each file)

- Open a file in CoolEdit Pro
- Adjust the bit depth:
 - Menu: Edit > Convert Sample Type
 - Keep Sample Rate at 44100
 - Choose Bit-depth: 4 bit
 - Click OK the file is converted
- Listen to the resampled file play different sections
- Look at the Frequency Analysis graph and check the frequencies in the resampled file.

Questions (for each file)

- Can you hear a difference between the original and the adjusted file? What is the difference?
- When looking at the Frequency Analysis, was there a difference between the original file and the adjusted file? What do these differences look like?
- Can you estimate the effect of adjusting the Bit-Depth on the data-rate of the file?
 - Data rate = (sampling-rate) * (bit-depth) * (number channels)

The CoolEdit Convert Sampling Rate Dialog
Bit-Depth Conversion

Wrap up!

Links

• CoolEdit Pro (Now Adobe Encore): http://www.adobe.com/encore