Media Adaptation for Ubiquitous Computing

Prof. Dr. Andreas Schrader
ISNM – International School of New Media
University of Lübeck
Germany
Overview

- Motivation
- Media Adaptation Mechanisms
- Media Adaptation Frameworks
- Ubiquitous Computing
- Ubiquitous Adaptation?
Motivation

- Multimedia streaming will be key issue in the future Internet

![Graph showing the number of streaming end-points from 2001 to 2007 across different categories: Business, Residential, Mobile. Source: Ovum, Streaming Media: Commercial Opportunities, Forecast, 2002]
Motivation

- Hugh potential revenues for streaming provider

Source: Ovum, Streaming Media: Commercial Opportunities, Forecast, 2002
Motivation

- Typical Examples

- IP-Telephony
- Online Gaming
- Internet Television
- Video Distribution
- Video-on-Demand
- Distance Learning
- Audio/Video-Conferencing
Motivation

- Heterogeneous **Multimedia Applications/Services**
 - Varying requirements (interactive/non-interactive, realtime/non-realtime, unicast/multicast, low delay/high bandwidth, etc.)

- Heterogeneous **Devices**
 - Varying screen sizes, CPUs, memory, power supplies, interfaces, etc.

- Heterogeneous **Access Networks**
 - Varying characteristics for loss, bandwidth, reliability, etc.

- Heterogeneous **User Policies**

 - *Normal User* likes to have an *on/off* button
 - *Cyborg* wants to specify the importance of certain parameters
Motivation

Additional challenges in *Mobile Networks*

Challenge: Heterogeneity
- Differing access technologies
- Differing network characteristics
- Differing device capabilities
- Java performance issues

Challenge: Network Congestion
- Shared network scenarios
- Unpredictable join / leave
- Fluctuating network load

Challenge: Radio Access
- Signal interference
- Propagation problems
- Uneven network coverage
- Network handoff
Adaptation Mechanisms

Where should media adaptation be performed?

Adaptive Applications
- Specific requirements of the Applications are well-known
 - Adaptivity mechanism has to be 're-invented' by each application
 - No global view for fairness, no inter-operability

Adaptive Middleware
- Combines advantages of both
 - Allows for fairness as well as application-specific treatment

Adaptive Operating Systems
- Global view allows for optimized utilization and fairness
 - Application semantic is unknown

Adaptive QoS (Networks)
- Active power control on the physical layer
- Error control and adaptive reservation at the data link layer
- Dynamic re-routing at the network layer
- Dynamic re-negotiation of connection parameters at transport layer (IntServ, DiffServ)

Vertical Coverage?
Optimal Strategy covers all layers
Adaptation Mechanisms

Where should media adaptation be performed?

Optimal Strategy is end-to-end

Horizontal Coverage?
Adaptation Mechanisms

Sender
- File Switching
 - Source
 - Filter
- Codec Switching
 - Size
 - Framerate
 - Colors
- Size
- Datarate
- Quality
- Framerate
- Color
- Encoding Manager

Channel Coding
- Channel Coding with priorities
 - Frame Re-ordering
 - Forward Error Correction

Packetization
- Packetizer
 - Packet-size Adaptation

Post-Processing
- Error Concealment
- Jitter
- Buffer

Receiver
- Selective Re-transmission
 - (SR-RTP)
- Adaptive Session Control Protocols
 - (RTP/RTCP, RTSP, SIP)
- Post-Processing Error Concealment
- RLM: Base + Enhancement Layers
- Simulcast: Independent Layers of varying Quality
- Heterogeneous Multicast: Min/Max/Quorum
- Codec Switching
- RTCP

Sender
- Encoding Parameter
- Congestion Manager
- RTP

Receiver
- Buffer
- Jitter Buffer
- Renderer

Multimedia Technology

ISNM
INTERNATIONAL SCHOOL OF NEW MEDIA
11/21/2003
Adaptation Mechanisms

- **References and Surveys (a very small collection ...)**

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Publication Details</th>
</tr>
</thead>
</table>
Adaptation Frameworks

- **MASA Qos Framework**
 - Co-operation between NEC, Siemens and University of Ulm (2001-2003)
 - Adaptive middleware between applications and networks
 - Dedicated adaptive *Media Manager*

- C. Niedermeier, C. Fan, D. Carlson, A. Schrader, A. Kassler, A. Schorr
 - MASA - A scalable QoS Architecture
 - 7th IASTED International Conference on INTERNET AND MULTIMEDIA SYSTEMS AND APPLICATIONS, Honolulu, Hawaii, USA, August 13-15, 2003

- H. Hartenstein, A. Schrader, A. Kassler, M. Krautgärtner, C. Niedermeier
 - High Quality Mobile Communication
 - Proceedings of the KIVS’2001 Conference (Kommunikation in Verteilten Systemen), German Informatic Society (GI), Hamburg, Germany, February 2001

- See also IEEE SoftCOM’2000, IEEE ASW’2001
- http://masa.ccrle.nec.de
Adaptation Frameworks

MASA Media Manager
- Analysis comprehensive monitoring values
- Performs locally and globally optimized adaptation strategies
- Decides for parametrization of attached Media Controllers and QoS reservations
- A number of algorithms have been developed

User QoS Policy
Monitoring Results
Movement Detection
Resource Availability

- QoS Parameters
- Codec Selections
- Filter Selections
- Etc.
Examples

- **Some Implemented MASA Media modules**
 - **WaveVideo Filtering**
 - Christian Kücherer: Master thesis
 - (University of Applied Sciences Mannheim, 2001)
 - **Audio Adaptation**
 - Hyung-Woo Kim: Master thesis
 - (University of Stuttgart, 2001)
 - **MPEG-4 Filtering**
 - Philipp Bostan: Master thesis
 - (University of Applied Sciences Mannheim, 2002)

Christian Kücherer, Andreas Kassler, Andreas Schrader, Oliver Haase
End Device and Network Adaptation of WaveVideo Streams
Proceedings of the Conference on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet (SSGRR) L'Aquila, Italy, August 6-12, 2001

Andreas Kassler, Christian Kücherer and Andreas Schrader
Efficient Wavelet Video Filtering
2nd International Workshop on Quality of future Internet Services, (QoIS) Coimbra, Portugal, Sep. 24-26, 2001
Examples

Traditional Adaptation Approach

1. Chain teardown
 - Data Flow: DATA LOSS!

2. Chain rebuild
 - Data Flow: DATA LOSS!

3. RTP reconnect
 - Data Flow:

Problems:
- Data loss during chain teardown & rebuilding
- Long adaptation time interrupts stream

Seamless Adaptation Approach

1. Parallel chain build
 - Old chain: filter 'A' codec 'A'
 - New chain: filter 'B' codec 'B'
 - Data Flow:

2. RTP reconnect
 - Old chain: filter 'A' codec 'A'
 - New chain: filter 'B' codec 'B'
 - Data Flow:

3. Old chain teardown
 - Old chain: filter 'A' codec 'A'
 - Data Flow:

Advantages:
- No loss during chain reconstruction
- Reduced adaptation time
Examples

- **Seamless Codec Switching**
 - Realized in Java (JMF/RTP/RTCP)
 - Pluggable Adaptation Modules
 (Frame Filter, Quality, Datarate, Codec Switch)
 - MPEG-4 Packetizer / Depacketizer / Frame Filter (DivX4.12)
 - Results:
 - *Gap time below 1 ms* (measurement accuracy)
 - *Zero packet loss* (proved with packet sniffer)
 - *Codec and media type independent*

Darren Carlson and Andreas Schrader
Seamless Media Adaptation with simultaneous Media Processing Chains
Proceedings of the ACM Conference on Multimedia
Juan-les-Pins, France, December 1-6, 2002
(International patent pending)
Examples

Adaptive Multimedia on Small End Devices

Coffee Shop Hotspot Network

Public Access Network

Current Clients

NEC Device Available Bandwidth

NEC Seamless Adapter

Sender Data Rate	Quality Factor	Frame Rate	Loss Ratio	Jitter
1000 | 100 | 25 | 100 | 2000
0 | 0 | 0 | 0 | 0

Status:
- Unloaded
- Sequential, MPEG4, Smooth
Adaptation Frameworks

- Where should media adaptation be performed?

- Service? Messaging, Download, Streaming, Conversational
- Receiver? Single-user, Many users
- Access? DAB/DVB, GPRS, UMTS, WLAN
- State? Offline, Inactive, Interactive
- Device? TV, PC, PDA, Multimedia Phone, Mobile Phone

Content access and delivery methods
User context
Adaptation Frameworks

- Adaptive Overlay Content Delivery Network
 - *Hiding the complexity* of the underlying heterogeneous transport networks to operators and content providers
 - Providing *new and enhanced services*
 - Supporting *communication as well as consumption-oriented services*
 - Supporting *multi-provider, multi-domain scenarios* using different business models
 - Managing *routing* (coarse-grained modification), *adaptation* (fine-grained modification) and *caching* of multimedia in an integrated manner
 - Providing configuration means for providers and recipients
 - Interaction with underlying QoS and mobility management system
Adaptation Frameworks

- **Adaptive Multimedia Routing Strategies**
 - Selecting optimal path(s) through the 'wireless world' regarding resources and preferences from users and operators
 - Disjoint path delivery for individual media streams
 - Optimal selection of delivery means (broadcast, multicast, unicast)

- **Multimedia Adaptation Strategies**
 - Optimizing the transmission parameters during a running session
 - Optimization of the mix of available adaptation means
 - Support of adaptive network nodes and adaptive end-systems
Still there?
Ubiquitous Computing

- Invented by Marc Weiser in 1988 (Xerox Parc)

"Ubiquitous Computing enhances computer use by making computers available throughout the physical environment, while making them effectively invisible for the human user."

- Goal: Making the computer invisible to enhance the real world (opposite of virtual reality!)

Philips HomeLab: Mirror with integrated Displays
Dimensions of Ubiquitous Computing

- **Level of Embeddedness**
 - **Pervasive Computing**
 - **Ubiquitous Computing**
 - **Traditional Business Computing**
 - **Mobile Computing**

- **Level of Mobility**

<table>
<thead>
<tr>
<th>Embeddedness</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

- **Integration of large-scale mobility with pervasive computing functionality**
- **Obtain information about environment and build model of computing**
- **Moved from insulated and sealed rooms to offices and homes.**
- **Mobile devices, like Laptops (laps), PDAs (pockets), wearables (clothes&body)**

© Kalle Lyytinen and Youngjin Yoo, Communications of the ACM, December 2002
Ubiquitous Computing

- **Wearable Computers**

 Digital Jewelry (IBM)

 Source: http://www.ibm.com

 Steve Mann: Cyborg

 Source: http://www.i4u.com/article407.html

 Electronic Display in Jacket (Pioneer)

 Source: http://www.i4u.com/article407.html

- **Foldable Display**

 The foldable display (Carnegie Mellon)

 Source: http://www.ices.cmu.edu/design/FoldableDisplay.html
Ubiquitous Computing

- **Human-Computer-Interfaces**

 Augmented Reality (Eyetap)
 Source: http://eyetap.org/research/medr/rwm.html

 - Dynamic Shader Lamps: Painting on Real Objects

 D, Bandyopadhyay, R. Raska, H. Fuchs:
 Dynamic Shader Lamps: Painting on Real Objects

 Tangible Media (MIT)
 Source: http://tangible.media.mit.edu/
Ubiquitous Computing

- Ubiquitous multimedia in *Minority Report*

 - Personalized Public Commercials
 - Electronic Ink Newspaper
 - 3D Shop Assistant
 - Buildings and Walls as Displays

Copyright: Steven Spielberg (20th Century Fox/Dreamworks), 2002
Ubiquitous Adaptation?

- New Challenges in Ubiquitous Environments

 - Pervasive devices will be used for different tasks, by different users, in different environments, locations and contexts.

 - Pervasive Devices
 - *Very limited* in capabilities
 - In extreme cases, sensor nodes are covering the environment (smart carpet, intelligent brick, smart cups)
 Can we use them as proxies or caches?
 How to delegate/distribute?

 - Context Information
 - Location awareness of content, user and stream provision entities
 - *Session mobility* with context transfer
 - Proximity awareness through user recognition systems
 - Supporting fluctuating *sparse and dense user concentrations*
Ubiquitous Adaptation?

- New Challenges in Ubiquitous Environments
 - Human-Computer Interfaces
 - Support of *disabled and handicaped persons* (e.g. color blindness)
 - New transcoding mechanisms for *tangible media interfaces*
 - Ambient content adaptation to environment features (e.g. style)
 - Intelligent adaptation algorithms considering *subjective and objective*
 aural and visual quality *perception*
 - General
 - Automatic decisions for best presentation device (or means)
 - *Privacy and security* aspects (e.g. media streaming in public displays)
 - Generalized placement strategies for proxy server
 - Power Management
 - Optimizing the mix of available adaptation means (e.g. file switching, codec switching, codec parameter changing, pre- and post-codec filtering, FEC, layered transmission, selective re-transmission, adaptive playout buffers, jitter compensation buffers, etc.)
 - Multiple media tracks (e.g. different camera positions)
 - Etc.?
International School of New Media
Affiliated Institute of the University of Lübeck
Master of Science Program (Digital Media)
18 months program (ECTS), focus areas:
- E-Business
- Work Design
- Digital Media Development
- Mobile Communication and Computing
http://www.isnm.de

Partner Institutions:
:: McLuhan Institute
 Toronto Kanada
:: ZKM :: Center for Art and Media Technology
 Karlsruhe, Germany
:: University of California
 Santa Barbara, USA
:: University of Colorado
 Boulder, USA
:: University of Queensland
 Brisbane, Australia
Any Questions?