Seamless Media Adaptation with Simultaneous Processing
Chains.

Darren Carlson
NEC Europe Ltd., Network Laboratories
Adenauerplatz 6
69115 Heidelberg, Germany

Darren.Carlson@ccrle.nec.de

ABSTRACT

In this paper we investigate a seamless method for the adap-
tation of streamed media by using simultaneous processing
chains. The common approach for media adaptation is to
deconstruct the current media processing chain and to con-
struct a new media chain afterwards. As a consequence, me-
dia frames might be lost and the adaptation cycle needs sig-
nificant time. In our approach, the new processing chain is
built in parallel to the current one and the stream is switched
to the new chain as soon as possible. With this mecha-
nism, we can guarantee zero-loss behaviour in the sender,
and at the same time, reduce the overall adaptation time
significantly. The proposed method is independent of the
actual codec and can be applied to both audio and video
streams. We present a formal calculation of the possible im-
provements of our proposed mechanism with respect to in-
formation loss and adaptation speed and also report about
results obtained in our implementation using the Java Media
Framework.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General

General Terms
Algorithms, Performance

1. INTRODUCTION

IP networks are seen as promising technologies for the de-
livery of advanced multimedia services. However, due to the
sensitive nature of real-time multimedia data and the inher-
ent characteristics of current wireless and wired IP networks,
high-quality multimedia communication can be problematic
and error-prone. New mechanisms for realising Quality-of-
Service (QoS) are therefore needed. A large number of mech-
anisms has already been developed to support service guar-
antees or traffic differentiation with higher priorities for real-
time traffic (e.g. DiffServ [2], IntServ [5]). But these kind

Andreas Schrader
NEC Europe Ltd., Network Laboratories
Adenauerplatz 6
69115 Heidelberg, Germany

Andreas.Schrader@ccrle.nec.de

of mechanisms are not appropriate in situations of highly
fluctuating network parameters due to physical limitations,
especially in the case of wireless networks. In order to sup-
port end-to-end QoS in such scenarios, adaptive mechanisms
in end-systems are required in addition. Recently, a num-
ber of approaches for integrated adaptive QoS management
systems have been proposed (e.g. [1], [7], etc.)

Very often, it is possible to improve overall streaming qual-
ity by changing parameters for audio and video codecs at
the sender based on appropriate feedback monitoring. By
inserting filter modules or changing the involved compres-
sion algorithm, the stream can be tailored to the current
network situation. This adaptation process itself, however,
also introduces additional quality problems due to the com-
plex and time consuming process of deconstructing and re-
building media processing chains.

i itput 1
input L ,[] Codec H Filter M Peckelizer H Dﬂl’”

Media Processing Chain 1
Media suitch Output
Source Data

- Hilowe o] e (bl potesr] .]
input 2 output 2

Media Processing Chain 2

Figure 1: Example Sender Parallel Media Process-
ing Chain.

A media processing chain is often a complicated collection of
codecs, packet handlers, media filters, and memory buffers
for processing media data (see figure 1 for an example of a
sender with two concurrent media processing chains). Adapt-
ing such a media processing chain often requires a lengthy
process of deconstructing parts of chain or the complete
chain, and rebuilding a replacement.

This process is impacted by two types of delay, present
within every element of the media processing chain - setup
delay and intrinsic delay. Setup delay is defined as the time
required by the processing element to initialise its inter-
nal data structures, acquire necessary resources and become
ready for operation. Intrinsic delay is characterised as the
additional time, beyond setup delay, required by a process-
ing element to produce a particular output with a given
input. Together, setup and intrinsic delays can introduce

Adaptation
5x Request
PN N
f

t, (losstime) S qy\
X ‘[j X, 4 «xv {x
<
{;" “3 %f\ ﬂ," q/" ty ‘"'\e MM)
Source | o [i ienfie2 3|2 || 0 | |2
lppot (K t—>
| teardown g
: chain 1 setup chain 2 Q
Output |<_61.> 1 2 i |e— @ —>le o, > g <O j || j+2
setupchainl | A A A A t_>
- > V3 A A 4 M A M 7 A v A
OX
o /S > A LS N N 63
I G S & @ DTG
0 o~ o X0~ ?x it
S o o
. A S A J
2’ Y v
tol(delay= ¢,) tv(gap time) toz(delay=0,)

Figure 2: Conventional Media Chain Adaptation through sequential chain building.

additional levels of data loss and extended delays that can
degrade quality.

Conventional adaptation mechanisms utilize a simplified me-
thod of deconstructing and reconstructing media processing
chains without regard for either setup or intrinsic delays.
Since these delays can be significant and cause data loss, we
propose a new seamless method that avoids these effects.

The remainder of this paper is organized as follows. In sec-
tion 2, an analytical model for the conventional approach
is given as a reference to allow for verifying formally the
improvements gained with our proposed seamless method
in section 3. In section 4 we demonstrate the improvements
for some examples and report from our prototype implemen-
tation using the Java Media Framework (JMF, [6]) of Sun
Inc. Finally we conclude our paper and present an outlook
to future work.

2. CONVENTIONAL APPROACH

In the conventional approach, the current media chain will
be deconstructed before the new media processing chain is
constructed. During this time, some data will be lost and
there will be also a gap in the output stream.

Fig. 2 demonstrates the common mechanism to realize me-
dia adaptation. A media source (e.g. camera) is produc-
ing raw video frames with framerate f[1]. The raw data
is used as input I in the processing chain C;. We can
consider this input as synchronized data frames of length
Ay = %, which will be available at the processing chain at

synchronous times {to,to + Ay, t0 +2 - Ay, ...}

The time needed to setup a complete media chain C; in-
cluding codecs, filters, buffers, (de-)packetizers and all in-
volved resources is denoted as ;. We assume, that the
media chain C; is already setup at to and frame 1 is the
first frame to be processed. The intrinsic delay of the media
chain C; is denoted as §;. This is the time needed inter-
nally to process the input and create output. The output
of the media chain can therefore be generated at the times
{to+d1,t0+ 01 + Ayt + 01 +2- Ay, ..}

Without loss of generality we assume, that there is a media
management system involved (e.g. the MASA QoS Frame-
work [3]), which issues an adaptation request at time ¢,. We
also assume, that this request is issued during the playout of
data packets for frame number ¢. The playout of all packets
of that frame is continued. Afterwards the complete me-
dia processing chain is closed. Depending on the involved
codecs and packetizers as well as on the media parameters
(e.g. video frame rate) the playout process of the last frame
will be finished latest at time to+d1+i-A;. The time neces-
sary to release all the resources of chain C; is denoted as ¢;.
This process is finished at time tq+d1 +7- A¢ +¢1. Now, the
new media processing chain C> is constructed, which needs
o2 seconds to finish. To avoid large buffers and delays, we
assume, that the processing of the frames inside the chain
cannot be performed faster than realtime, which means that
the processing of input media can only be started with the
arrival of a complete new input frame and that the next
available input frame for the new chain after finishing the
setup phase is frame number j. This could lead to a small
period of time which is needed to wait for frame number j
(indicated as the resync phase in fig. 2).

The new chain starts to consume raw data at time ¢; and
due to the internal delay d2, the first output is available at
to+d2. During the interval [to + 81 +i- A, £y +d2] no output
is produced. We denote this time period the gap time ¢,.

The start time of chain C2 can be calculated as

o +i-Ar+ ¢1+ 02

to = to+] X 1- Ay
)
— to+[i+w].&5 (1)
t

With ty = to + (j — 1) - A¢ we can determine the first frame
to be played out by the new chain:

01+ @1 + o2

j=i4 (R @

With ¢ty = (j — 1) - Ay — i - Ay we get the loss time ¢y:

01 + ¢1 + o2

t>\:|— A,

1A 3)

Adaptation
Sx Request
{7‘ X g ﬁ‘.{ g

X XN V\
)) < X
g‘} /VV %/VV qf‘! qf\! tr _____________ A O \V\Q
source |y b L [fisee 2 || i e |2
lpput | | | gy >
|
[S N . . SEE. NG NG
Outputl |«d» 1 [2 [. [i [iva]is2 i2 | 1) >
setupchainl | N e e e e e e t>
YA A | g At O, +(j-1)At
y +3.+(j-
: &éo» > [setup chain 2 ; A
! o I > F i< L §,—» j |j|j+2
A < g, >ie s] 2 J J] t
| A 0 L A >
Output 2 v 'y v 7
s
O X D
‘D;(\V\ ?}% g;‘d gxg“
o~ 7 ° XV/*
[\ ~ v g A ~ A v J
tol(delay=9,) ty(gaptime) toz(delay=4,)

Figure 3: Seamless Media Chain Adaptation through parallel chain building.

We can also determine the number of unprocessed packets
during that time period by

01+ ¢1 + o2
e @

The gap time is the period, where no output is produced
during the adaptation phase:

A=j—1—i=]

ty = to+02— (to+61+i-Ay)
)
= [#] Ay + (82— 61) (5)
t

In the conventional case, the time ¢, needed to fulfil the
adaptation request (which is the time between the request
and the playout of the first frame from chain C») is exactly
the gap time: t, = t,. Depending on the setup time of
chain C5, the adaptation will not only be slow, but will also
produce some lost frames during the adaptation.

3. SEAMLESS APPROACH

Our new seamless approach improves the situation signifi-
cantly be shifting processing tasks in order to minimize loss
and delay of adaptive playout.

Fig. 3 demonstrates the new approach. For the input data,
the same argumentation as in the previous subsection ap-
plies.

Again, at t, an adaptation request is issued by the media
management system during the playout of data packets for
frame number 7. But in our seamless approach, the current
active chain is not closed immediately and the processing
and playout of data frames continues. Instead, the setup
of the new media chain C> is performed in parallel. The
setup phase needs o2 seconds. We again denote the first
subsequent input frame available after setup as frame j. We
also again denote this time event t;. The chain now starts
to consume raw data and due to the internal delay d2, the
first output is available at ¢, + d2.

Since the setup of chain C5 is performed in parallel, chain C
produced compressed data for transmission including frame

number j — 1. Since chain C5 starts with frame number j,
actually none of the frames will be lost.

Since ¢1 = 0 the start time of chain C> can be calculated as
0141 A+ 02
Ay
01+ o2
Ay
With tg = to+ (j — 1) - A; we can determine the first frame

to be played out by the new chain as:

61+ o2

!

to = t0+|— -|At

t0+|—i+ -|At (6)

=i+ +1 7
j= it [™
The gap time can be determined as follows:

ty = to+d—(to+d1+(j—1)-A)
= -4 (8)

In the case of §> > §1, a small gap will occur during playout
which can be compensated by buffers. These buffers will be
used anyhow to compensate jitter. The gap is based on the
delay difference between the codecs and is independent from
our mechanism. If the intrinsic delay values are equal, the
stream can be continously played out. If §» < d1, the playout
of the new media chain is available even before the playout of
the current media chain. Therefore, it is up to the algorithm
to decide, at which frame the new chain will be used. This
decision could be based on the actual datarate produced for
the certain frame by both chains. One solution could be to
switch to the new chain in the moment, the output of Cs
creates a smaller datarate. In both cases, no frames are lost
and therefore

ta=0,A=0 9)
With the seamless approach, the adaptation time ¢, is also
shorter, since the new chain is able to playout frames earlier:

ta = to+02— (to+d1+i-Ay)
= t0+|—i+61+02-|'At+52—t0—(51—i-At
t
01 + 02
[F 7 A+ (52 - 01) (10)
t

4. RESULTS

By using the analytical model presented in sections 2 and 3,
we can show the improvements gained with some example
values. If we assume ’perfect’ processing chains, which can
be instantiated instantaneously, and which have an intrin-
sic codec delay of § = Oms, both conventional and seam-
less mechanisms are of equal performance. But this is of
course an unrealistic scenario. Even for very fast setup and
teardown times, e.g. 02 = ¢1 = 50ms and low delays of
61 = b0ms, 62 = 30ms, in the conventional case we already
have a gap time of ¢, = 180ms, resulting in 4 lost frames.
With our method this can be significantly improved by 89%
(ty = 20ms). No frames will be lost at all. For higher delay
and setup values, which typically arise in real implementa-
tions, the results are even better.

As an example multimedia middleware, we used the Java
Media Framework (JMF) of Sun Inc. [6]. JMF provides
an comprehensive multimedia API allowing for construct-
ing processing chains. JMF itself is not able to switch be-
tween codecs during processing. We have extended the API
with adaptation modules realizing our proposed simultane-
ous method. Due to the space restrictions, we concentrate
here on the results for the audio codecs supporting RTP
transmission in JMF (i.e. DVI, G.711, G.723, GSM and MP3
(MPEG-2 Layer 3)). In our sender, we have implemented an
adaptation cycle going through all possible codec changes,
where every 20 seconds an adaptation is performed. The
measurements were performed using a CaptureDataSource
querying audio samples from a microphone.

[ms] | DVI | GSM | G.711 | G.723 | MP3
DVI | 1744 | 586.8 | 667.0 | 583.0 | 140.0
GSM | 178.2 | 586.6 | 600.6 | 580.0 | 140.4
G.711 | 188.2 | 598.8 | 678.8 | 556.6 | 142.2
G723 | 182.4 | 5504 | 671.0 | 588.8 | 148.8
MD3 | 234.2 | 585.0 | 654.8 | 603.0 | 148.2

Table 1: Gap times ¢, without seamless approach.

Table 1 demonstrates the large gap times, that can occur
using the conventional method with average values over 10
runs for each possible adaptation on an Athlon Thunderbird
(750MHz, 256MByte) running Windows 2000. Even though
the values vary somehow, it can be clearly observed, that
the adaptation time strongly depends on the target codec.
Even for the fastest codec available (MP3), we observe a gap
time of 140ms, resulting in a loss of 2-3 packets on aver-
age. Similar experiments with a FileDataSource have shown
even worse results due to uncontrolled garbage collection
and other effects. In the worst case, delays exceeded 3 sec-
onds, leading to significant frame loss. For devices with lim-
ited computing power (i.e. mobile devices) acceptable adap-
tation cycles may not be possible.

With our proposed seamless method we observed significant
improvements with respect to both delay and frame loss.
The gap time was always smaller than 1ms (measurement
accuracy). Packet loss was completely eliminated which was
verified utilizing a packet sniffer tool [4]. We must mention
nevertheless, that the parallel instantiation of a second pro-
cessing chain causes a slight increase in jitter values for the

last 5-10 packets of the old chain and the first 5-10 pack-
ets of the new chain, but this could be easily eliminated
with a jitter compensation buffer. The results for video are
even better, since the setup times for video codecs are much
higher.

5. CONCLUSIONS

In this paper we have demonstrated a seamless adaptation
scheme for multimedia transmission. By using simultaneous
media processing chains instead of sequential teardown and
setup phases, the adaptation process has been significantly
improved. We have demonstrated our results with an ana-
lytical model as well as with a Java-based implementation.
Gap times and adaptation times have been significantly re-
duced and loss of unprocessed data frames could be avoided
completely.

The proposed method could be easily enhanced with addi-
tional features. For example, in some cases it might be useful
to create more than one parallel chain, e.g. to support hi-
erarchical codecs in powerful machines. The time to switch
from the previous to the new chain could also be based on
additional parameters, e.g. produced datarate. This could
be very useful to allow for settling of involved processing
modules (some codecs initially produce a higher datarate).
In some cases, it might also be useful to not immediately
release the resource of the old chain after the switch, since
in future adaptation requests, the old chain might be needed
again. Sometimes, the process might even be optimized by
re-using parts of the old chain (e.g. the codec) for the new
chain and replacing a sub-chain (e.g. filter modules).

Currently we are working on additional implementations of
our mechanism using the new Quicktime 6 API and are also
planning to support the same process using the Java Multi-
media APT in the Java 2 Micro Edition on small end devices.

6. REFERENCES

[1] C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey
of QoS Architectures. Multimedia Systems Journal,
6(3):138-151, May 1998.

[2] A. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. RFC2475: An Architecture for
Differentiated Services. IETF.

[3] D. Carlson, H. Hartenstein, A. Schrader. QoS
Orchestration for Mobile Multimedia. In Proceedings of
the First Workshop on Applications and Services in the
Wireless Networks, ASW’2001, July 2001.

[4] GNU. The Ethereal Packet Sniffer Tool.
http://www.ethereal.com/.

[5] D. C. R. Braden and S. Shenker. RFC1633: Integrated
Services in the Internet Architecture: An Owerview.
IETF, June 1994.

[6] Sun. The Java Media Framework Version 2.0 APIL
http://java.sun.com/products/java-media/jmf.

[7] B. Vandalore, R. Jain, S. Fahmy, and S. Dixit.
AQuaFWIN: Adaptive QoS Framework for Multimedia
in Wireless Networks and its Comparison with other
QoS Frameworks. In Proc. LCN’99, Oct 1999.

